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Abstract—The classical redistribution problem aims at opti-
mally scheduling communications when moving from an initial
data distribution to a target distribution where each processor
will host a subset of data items. However, modern computing
platforms are equipped with a powerful interconnection switch,
and the cost of a given communication is (almost) independent of
the location of its sender and receiver. This leads to generalizing
the redistribution problem as follows: find the optimal one-to-
one mapping of the subsets of data items onto the processors for
which the cost of the redistribution is minimal. This paper studies
the complexity of this generalized problem. We provide optimal
algorithms and evaluate their gain over classical redistribution
through simulations. We also show the NP-hardness of the prob-
lem to find the optimal data partition and processor permutation
(defined by new subsets) that minimize the cost of redistribution
followed by a simple computation kernel.

I. INTRODUCTION

In parallel computing systems, data locality has a strong
impact on application performance. To achieve a good locality,
a redistribution of the data may be needed between two
different phases of the application, or even at the beginning
of the execution, if the initial data layout is not suitable
for performance. Data redistribution algorithms are critical to
many applications, and therefore have received considerable
attention. The data redistribution problem can be stated in-
formally as follows: given N data items that are currently
distributed across P processors, re-distribute them according
to a different layout. Consider for instance a dense square
matrix A = (aij)0≤i,j<n of size n whose initial distribution
is random and that must be re-distributed into square blocks
across a p× p 2D-grid layout. A scenario for this problem is
that the matrix has been generated by a Monte-Carlo method
and is now needed for some matrix product C ← C + AB.
Assume for simplicity that p divides n, and let r = n/p. In this
example, N = n2, P = p2, and the redistribution will gather a
block of r×r data items on each processor. More precisely, all
the elements of block Bi,j = (ak,�), where ri ≤ k < (r+ 1)i
and rj ≤ � < (r + 1)j, must be sent to processor Pi,j .
This example illustrates the classical redistribution problem.
Depending upon the cost model for communications, various
optimization objectives have been considered, such as the total
volume of data that is moved from one processor to another, or
the total time for the redistribution, if several communications
can take place simultaneously. We detail classical cost models
in Section II, which is devoted to related work.

Modern computing platforms are equipped with powerful
interconnection switches, that permit to map the most usual
interconnection graphs onto the physical network with reduced
(or even negligible) dilation and contention. Continuing with
the example, the p× p 2D-grid will be a virtual grid, meaning
that the interconnection switch will emulate a 2D-grid. But
the layout of the processors in the grid is completely flexible.
For instance, the processors labeled P1,1, P1,2 and P2,1 can
be any processors in the platform, and we have the freedom
to choose which three processors will indeed be labeled as the
top-left corner processors of the virtual grid. Now, to describe
the matrix product on the 2D-grid, we say that data will be
sent horizontally between P1,1 and P1,2, and vertically between
P1,1 and P2,1, but this actually means that these messages will
be routed by the actual network, regardless of the physical
position of the three processors in the platform.

This leads to revisit the redistribution problem, adding up
the flexibility to select the best assignment of data to the
processors (according to the cost model). The problem can
be formulated as mapping a partition of the initial data onto
the resources: there are P data subsets (the blocks in the
example) to be assembled onto P processors, with a huge
(exponential) number, namely P !, of possible mappings. An
intuitive view of the problem is to assign the same color to all
data items in a given subset (block), and to look for a coloring
of the processors that will minimize the redistribution cost. For
instance, if the data items in the first block B0,0 are colored
red, we may want to select the processor that initially holds the
most red items as the target ’red’ processor, i.e. the processor
where items of block B0,0 are to be redistributed.

One major goal of this paper is to assess the complexity of
the problem of finding the best processor mapping for a given
data partition and initial distribution of this data. This amounts
to determine the processor assignment that minimizes the cost
of redistributing the data according to the partition. There are
P ! possible redistributions, and we aim at finding the one with
minimal cost. In this paper, we use the two most widely-used
criteria in the literature to compute the cost of a redistribution:

• Total volume. In this model, the platform is not dedi-
cated, and the objective is to minimize the total commu-
nication volume, i.e., the total number of data items that
are sent from one processor to another. Minimizing this
volume is likely to least disrupt the other applications
that are running on the platform. Conceptually, this is
equivalent to assuming that the network is a bus, globally
shared by all resources.
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• Number of parallel steps. In this model, the platform is
dedicated to the application, and several communications
can take place in parallel, provided that they involve
different processor pairs. This is the one-port bidirectional
model used in [1], [2]. The quantity to minimize is the
number of parallel steps, where a step is a collection of
unit-size messages that involve different processor pairs.

One major contribution of this paper is the design of an
optimal algorithm to solve this optimization problem for either
criterion. We also provide various experiments to quantify the
gain that results from choosing the optimal mapping rather than
the canonical mapping where processors are labeled arbitrarily,
and independently of the original data distribution.

As mentioned earlier, a redistribution is usually motivated
by the need to efficiently execute a subsequent computational
kernel. In most cases, there may well be many data partitions
that are suitable to the efficient execution of this kernel. The
optimal partition also depends upon the initial data redistri-
bution. Coming back to the introductory example, where the
redistribution is followed by a matrix product, we may ask
whether a full block partition is absolutely needed? If the
original data is distributed along a suitable, well-balanced
distribution, a simple solution is to compute the product
in place, using the owner-compute rule, that is, we let the
processor holding Ci,j compute all Ai,kBk,j products. This
means that items of A and B will be communicated during
the computation, when needed. On the contrary, if the original
distribution has a severe imbalance, with some processors
holding many more data than others, a redistribution is very
likely needed. But in this latter case, do we really need a
perfect full block partition? In fact, the optimization problem
is the following: given an initial data distribution, what is the
best data partition, and the best mapping of this partition onto
the processors, to minimize total execution time, defined as
the sum of the redistribution time and of the execution of the
kernel. Another major contribution of this paper is to assess
the complexity of this intricate problem. Finding the optimal
partition mapping becomes NP-complete when coupling the
redistribution with a simple computational kernel such as an
iterative 1D-stencil kernel. Here the optimization objective is
the sum of the redistribution time (computed using either of
the two criteria above, with all communications serialized or
with communications organized in parallel steps), and of the
parallel execution time of a few steps of the stencil. Intuitively
this confirms that determining the optimal data partition and
its mapping is a difficult task. Stencil computations naturally
favor block distributions, in order to communicate only block
frontiers at each iteration. But this has to be traded-off with
the cost of moving the data from the initial distribution, with
the number of iterations, and with the possible imbalance of
the final distribution that is chosen (whose own impact depend
upon the communication-to-computation ratio of the machine).
Altogether, it is no surprise that all these possibilities lead to
a truly combinatorial problem.

The rest of the paper is organized as follows. We survey
related work in Section II. We detail the model and formally
state the optimization problems in Section III. We deal with
the problem of finding the best redistribution for a given data

partition in Section IV. Sections IV-A and IV-B provide opti-
mal algorithms, while Section IV-C reports simulation results
showing the gain over redistributing to an arbitrary compatible
distribution. In Section V, we couple the redistribution with a
stencil kernel, and show that finding the optimal data partition,
together with the corresponding redistribution, is NP-complete.
We provide final remarks and directions for future work in
Section VI.

II. RELATED WORK

A. Communication model

The macro-dataflow model has been widely used in the
scheduling literature (see the survey papers [3], [4], [5], [6] and
the references therein). In this model, the cost to communicate
L bytes is α+Lβ, where α is a start-up cost and β is the inverse
of the bandwidth. In this paper, we consider large, same-sized
data items, so we can safely restrict to unit communications
that involves a single block of data; we integrate the start-up
cost into the cost of a unit communication.

In the macro-dataflow model, communication delays from
one task to its successor are taken into account, but communi-
cation resources are not limited. First, a processor can send
(or receive) any number of messages in parallel, hence an
unlimited number of communication ports is assumed (this
explains the name macro-dataflow for the model). Second, the
number of messages that can simultaneously circulate between
processors is not bounded, hence an unlimited number of
communications can simultaneously occur on a given link.
In other words, the communication network is assumed to be
contention-free, which of course is not realistic as soon as the
processor number exceeds a few units.

A much more realistic communication model is the one-port
bidirectional model where at a given time-step, any processor
can communicate with at most one other processor in both
directions: sending to and receiving from another processor.
Several communications can occur in parallel, provided that
they involve disjoint pairs of sending/receiving processors.
The one-port model was introduced by Hollermann et al. [1],
and Hsu et al. [2]. It has been widely used since, both for
homogeneous and heterogeneous platforms [7], [8].

B. Redistribution

The complexity of scheduling data redistribution in dis-
tributed architecture strongly depends on the network model.
When the network has a general graph topology, achieving the
minimal completion time for a set of communication is NP-
complete, even when the time required to move any file along
any link is constant [9]. A common assumption is to consider a
direct bidirectional link between each pair of devices. Most pa-
pers use the one-port bidirectional model, but several variants
have also been considered. The first variant is a unidirectional
one-port model, where a processor can participate in only one
communication at a time (as a sender or a receiver); with this
variant, the redistribution problem becomes NP-complete [10].
A second variant consists in assuming that each processor
p has a number of ports v(p) representing the maximum
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number of simultaneous file transfers that can be progressed
simultaneously [11]. Finally, in a third variant [12], processors
have memory constraints that must be enforced during the
redistribution process.

C. Array redistribution

A specific class of redistribution problems has received
a considerable attention, namely the redistribution of ar-
rays that are distributed in a block-cyclic fashion over a
multidimensional processor grid. This interest was originally
motivated by the HPF [13] programming style, in which
scientific applications are decomposed into phases. At each
phase, there is an optimal distribution of the data arrays onto
the processor grid. Typically, arrays are distributed according
to a CYCLIC(r) pattern1 along one or several dimensions
of the grid. The best value of the distribution parameter r
depends on the characteristics of the algorithmic kernel as well
as on the communication-to-computation ratio of the target
machine [14]. Because the optimal value of r changes from
phase to phase and from one machine to another (think of a
heterogeneous environment), run-time redistribution turns out
to be a critical operation, as stated in [15], [16], [17] (among
others). Communications are scheduled into parallel steps,
which involve different processor pairs. The model comes in
two variants, synchronous or asynchronous. In the synchronous
variant, the cost of a parallel step is the maximal size of a
message and the objective is to minimize the sum of the cost of
the steps [16], [18]. In the asynchronous model, some overlap
is allowed between communication steps [19]. Finally, the
ScaLAPACK library provides a set of routines to perform array
redistribution [20]. A total exchange is organized between
processors, which are arranged as a (virtual) caterpillar. The
total exchange is implemented as a succession of synchronous
steps.

III. MODEL AND FRAMEWORK

This section details the framework and formally states the
optimization problems. We start with a few definitions.

A. Definitions

Consider a set of N data items (numbered from 0 to N−1)
distributed onto P processors (numbered from 0 to P − 1).

Definition 1 (Data distribution). A data distribution D defines
the mapping of the elements onto the processors: for each data
item i, D(i) is the processor holding it.

Definition 2 (Data partition). A data partition P associates to
each data item i a partition P(i) (0 ≤ P(i) ≤ P − 1) so that,
for a given index j, all data items i with P(i) = j reside on
the same processor (not necessarily processor j).

It is straightforward to see that a data distribution D defines
a single corresponding data partition (defined by P = D).

1The definition is the following: let an array X[0...M − 1] be distributed
according to a block-cyclic distribution CYCLIC(r) onto a linear grid of P
processors. Then element X[i] is mapped onto processor p = �i/r� mod P ,
0 ≤ p ≤ P − 1.

However, a given data partition does not define a unique
data distribution. On the contrary, any of the P ! permutations
of 0, . . . P − 1 can be used to map a data partition to the
processors.

Definition 3 (Compatible distribution). We say that a data
distribution D is compatible with a data partition P if and
only if there exists a permutation σ of 0, . . . , P − 1 such that
for all 0 ≤ i ≤ P − 1, P(i) = σ(D(i)).

B. Cost of a redistribution

In this section, we formally state the two metrics for the cost
of a redistribution, namely the total volume and the number of
parallel steps. Both metrics assume that the communication of
one data item from one processor to another takes the same
amount of time, regardless of the item and of the location
of the source and target processors. Indeed, data items can
be anything from single elements to matrix tiles, columns or
rows, so that our approach is agnostic of the granularity of the
redistribution. As already mentioned, modern interconnection
networks are fully-connected switches, and they can implement
any (same-length) communication in the same amount of time.
Note that with asymmetric networks, when considering syn-
chronous communication steps as in ScaLAPACK, it is always
possible to use the worst-case communication time between
any processor pair as the unit time for a communication.

1) Total volume: For this metric, we simply count the
number of data items that are sent from one processor to
another. This metric may be pessimistic if some parallelism is
possible, but it provides an interesting measure of the overhead
of the redistribution, especially if the platform is not dedicated.

Given an initial data distribution Dini and a target distri-
bution Dtar , for 0 ≤ i, j ≤ P − 1, let qi,j be the number
of data items that processor i must send to processor j: qi,j
is the number of data items d such that Dini(d) = i and
Dtar (d) = j. For a given processor i, let si (respectively
ri) be the total number of data items that processor i must
send (respectively receive) during the redistribution. We have
si =

∑
j �=i qi,j and ri =

∑
j �=i qj,i. The total communication

volume of the redistribution is defined as RedistVol(Dini →
Dtar ) =

∑
i si =

∑
i ri.

2) Number of parallel steps: With this metric, some com-
munications can take place in parallel, provided that each of
them involves a different processor pair (sender and receiver).
This communication model is the bidirectional one-port model
introduced in [1], [2] and nicely accounts for contention when
several communications take place simultaneously.

We define a parallel step as a set of unit-size communi-
cations (one data item each) such that all senders are dif-
ferent, and all receivers are different. Given an initial data
distribution Dini and a target distribution Dtar , we define
RedistSteps(Dini → Dtar ) as the minimal number of parallel
steps that are needed to perform the redistribution.

C. Optimization problems

We formally introduce the optimization problems that we
study in Sections IV and V.
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1) Best redistribution compatible with a given partition: In
the optimization problems of Section IV, the data partition
is given, and we aim at finding the best compatible target
distribution (among P ! ones). More precisely, given an initial
data distribution Dini and a target data partition Ptar , we
aim at finding a data distribution Dtar that is compatible with
Ptar and such that the redistribution cost from Dini to Dtar

is minimal. Since we have two cost metrics, we define two
problems:

Definition 4 (VOLUMEREDISTRIB). Given Dini and Ptar ,
find Dtar compatible with Ptar such that RedistVol(Dini →
Dtar ) is minimized.

Definition 5 (STEPREDISTRIB). Given Dini and Ptar , find
Dtar compatible with Ptar such that RedistSteps(Dini →
Dtar ) is minimized.

We show in Section IV that both problems have polynomial
complexity.

2) Best partition, and best compatible redistribution: In the
optimization problems of Section V, the data partition is no
longer fixed. Given an initial data distribution Dini , we aim at
executing some computational kernel whose cost Tcomp(Ptar )
depends upon the data partition Ptar that will be selected.
Note that this computational kernel will have the same exe-
cution cost for any distribution Dtar compatible with Ptar ,
because of the symmetry of the target platform. However, the
redistribution cost from Dini to Dtar will itself depend upon
Dtar . We model the total cost as the sum of the time of the
redistribution and of the computation. Letting τcomm denote
the time to perform a communication, the time to execute
the redistribution is either RedistVol(Dini → Dtar ) × τcomm

or RedistSteps(Dini → Dtar ) × τcomm , depending upon the
communication model. This leads us to the following two
problems:

Definition 6 (VOLPART&REDISTRIB). Given Dini , find
Ptar , and Dtar compatible with Ptar , such that Ttotal =
RedistVol(Dini → Dtar ) × τcomm + Tcomp(Ptar ) is mini-
mized.

Definition 7 (STEPPART&REDISTRIB). Given Dini , find
Ptar , and Dtar compatible with Ptar , such that Ttotal =
RedistSteps(Dini → Dtar ) × τcomm + Tcomp(Ptar ) is mini-
mized.

Note that both problems require that we are able to com-
pute Tcomp(Ptar ) for any target data partition Ptar . This
is realistic only for very simple computational kernels. In
Section V, we consider such a kernel, namely the 1D-stencil.
We show the NP-completeness of both VOLPART&REDISTRIB

and STEPPART&REDISTRIB for this kernel, thereby assessing
the difficulty to couple redistribution and computations.

IV. REDISTRIBUTION

This section deals with the VOLUMEREDISTRIB and
STEPREDISTRIB problems: given a data partition Ptar and
an initial data distribution Dini, find one target distribution
Dtar among all possible P ! compatible target distributions that

Algorithm 1: BESTDISTRIBFORVOLUME

Data: Initial data distribution Dini and target data partition Ptar

Result: a data distribution Dtar compatible with the given data
partition so that RedistVol(Dini → Dtar ) is minimized

A← {1, . . . P} (set of processors)
B ← {1, . . . P} (set of data partition components)
G← complete bipartite graph (V,E) where V = A ∪B
for edge (i, j) in E do

weight(i, j)← |{d ∈ Ptar (j) s.t. Dini (d) 
= i}|

M ← minimum-weight perfect matching of G
for (i, j) ∈M do

for d ∈ Ptar (j) do Dtar (d)← i

return Dtar

minimizes the cost of the redistribution, either expressed in
total volume or number of parallel steps. We show that both
problems have polynomial complexity.

A. Total volume of communication

Theorem 1. Given an initial data distribution Dini and target
data partition Ptar , Algorithm 1 computes a data distribution
Dtar compatible with Ptar such that RedistVol(Dini → Dtar )
is minimized, and its complexity is O(NP + P 3).

Proof: The total volume of communication during the
redistribution phase from the initial distribution to the target
distribution is

RedistVol(Dini → Dtar) =
∑

0≤i≤P−1

si =
∑

0≤i≤P−1

ri

Solving VOLUMEREDISTRIB amounts to find a one-to-one
perfect matching between each component of the target data
partition and the processors, so that the total volume of com-
munications is minimized. Algorithm 1 builds the complete
bipartite graph where the two sets of vertices represents the P
processors and the P components of the target data partition.
Each edge (i, j) of this graph is weighted with the amount
of data that processor Pi would have to receive if matched to
component j of the data partition.

Computing the weight of the edges can be done with
complexity O(NP ). The complexity of finding a minimum-
weight perfect matching in a bipartite graph with n vertices
and m edges is O(n(m + n logn) (see Corollary 17.4a in
[21]). Here n=P and m=P 2, hence the overall complexity of
Algorithm 1 is O(NP + P 3).

B. Number of parallel communication steps

The second metric is the number of parallel communications
steps in the bidirectional one-port model. Note that this objec-
tive is quite different from the total communication volume:
consider for instance a processor which has to send and/or re-
ceive much more data than the others; all the communications
involving this processor will have to be performed sequentially,
creating a bottleneck.

Theorem 2. Given an initial data distribution Dini and target
data partition Ptar , Algorithm 2 computes a data distribution
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Algorithm 2: BESTDISTRIBFORSTEPS

Data: Initial data distribution Dini and target data partition Ptar

Result: A data distribution Dtar compatible with the given data
partition so that RedistSteps(Dini → Dtar ) is minimized

A← {1, . . . P} (set of processors)
B ← {1, . . . P} (set of data partition components)
G← complete bipartite graph (V,E) where V = A ∪B
for edge (i, j) in E do

ri,j ← |{d ∈ Ptar (j) s.t. Dini (d) 
= i}|
si,j ← |{d ∈

⋃
k �=j Ptar (k) s.t. Dini (d) = i}|

weight(i, j)← max(ri,j , si,j)

M← maximum cardinality matching of G (using the Hopcroft–Karp
Algorithm)
while |M| == P do

Msave ←M
Suppress all edges of G with maximum weight
M← maximum cardinality matching of G (using the
Hopcroft–Karp Algorithm)

return Msave

Dtar compatible with Ptar such that RedistSteps(Dini →
Dtar ) is minimized, and its complexity is O(NP + P

9

2 ).

Proof: First, given an initial data distribution Dini and a
target distribution Dtar , we can compute RedistSteps(Dini →
Dtar ) as

RedistSteps(Dini → Dtar ) = max
0≤i≤P−1

max(si, ri)

This well-known result [18] is a direct consequence of König’s
theorem (see Theorem 20.1 in [21]) stating that the edge-
coloring number of a bipartite multigraph is equal to its
maximum degree.

Algorithm 2 builds the complete bipartite graph G where
the two sets of vertices represents the P processors and the
P components of Ptar . Each edge (i, j) of the complete
bipartite graph is weighted with the maximum between the
amount ri,j of data that processor i would have to receive if
matched to component j of the data partition, and the amount
of data that it would have to send in the same scenario. A
one-to-one matching between the two sets of vertices whose
maximal edge weight is minimal represents an optimal solution
to STEPREDISTRIB. We denote byMopt such a matching and
mopt its maximal edge weight. Since there are P processors
and P components in Ptar , the one-to-one matching Mopt is
a matching of size P .

Algorithm 2 prunes an edge with maximum weight from G
until it is not possible to find a matching of size P , and it
returns the last matching of size P . We denote by Mret this
matching and mret its maximum edge weight. Let us assume
by contradiction that mret > mopt. Then matchingMopt only
contains edges with weight strictly smaller than mret. Since
Algorithm 2 prunes edges starting from the heaviest ones, these
edges are still in G when Algorithm 2 returnsMret. Thus we
can remove the edges with maximal weight mret in Mret

and still have a matching of size P . This contradicts the stop
condition of Algorithm 2. Thus mret = mopt and the matching
returned by Algorithm 2 is a solution to STEPREDISTRIB.

Again, computing the edge weights can be done with
complexity O(NP ). Algorithm 2 uses the Hopcroft–Karp

Algorithm [22] to find the maximum cardinality matching of

a bipartite graph G = (V,E) in time O(|E|
√
|V |). There are

no more than P 2 iterations in the while loop, and Algorithm 2

has a worst-case complexity of O(NP + P
9

2 ).

C. Evaluation of optimal vs. arbitrary redistributions

In this section, we conduct several simulations to illustrate
the interest of the two algorithms introduced above. In par-
ticular, we want to show that in many cases, it is important
to optimize the mapping rather than resorting to an arbitrary
mapping which could induce many more communications.
Source code for the algorithms and simulations is publicly
available at http://perso.ens-lyon.fr/julien.herrmann/.

1) Random balanced initial data distribution: First we con-
sider a random balanced initial data distribution Dini where
each processor initially hosts D data items, and each data
item has the same probability to reside on any processor. Most
parallel applications require perfect load balancing to achieve
good performance, and thus a balanced data partition. There-
fore, we consider here a balanced target data partition Ptar

(each of the P components Ptar (j) includes D data items).
We denote by Dcan the canonical data distribution (compatible
with partition Ptar ) which maps component Ptar (j) onto
processor j.

As seen in Section III, the volume of communica-
tion involved during the redistribution from Dini to Dcan

is RedistVol(Dini → Dcan) =
∑

0≤j≤P−1 |{d ∈
Ptar (j) s.t. Dini(d) �= j}|. Since |Ptar (j)| = D for any pro-
cessor j and Dini(d) is equal to j with a probability 1

P
for any

processor j and any data item d, we can compute the expected
volume of communication: E(RedistVol(Dini → Dcan)) =
D(P − 1). Thus, picking an arbitrary target distribution leads
to a volume of communication linear in P .

Each processor hosts D data items at the beginning and
at the end of the redistribution phase. Thus, according to
Section IV-B, the number of steps required to schedule the
redistribution phase is equal to D if and only if one of the P
processors has to send its complete initial data set during the
redistribution phase. This happens with probability

p = 1−

(
1−

(
P − 1

P

)D
)P

.

This probability is equal to 0.986 for P = 10 and D = 10,
and is non-decreasing with P , which means that the worst
number of steps is reached in almost all cases for average
values of D. This shows that most of the time, picking an
arbitrary data distribution Dcan will lead to poor performance.
Instead, we can use Algorithm 1 to find the data distribution
Dvol that minimizes the volume of communications involved
in the redistribution phase and Algorithm 2 to find the data
distribution Dsteps that minimizes the number of steps of the
redistribution phase. Figure 1 depicts the relative volume of
communication and the relative number of redistribution steps
when using target data distributions Dvol and Dsteps . The
results are normalized with the performance of the arbitrary
target distribution Dcan . The simulations have been conducted
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Figure 1: Performance of Algorithm 1 and 2 compared to the
canonical distribution for a random initial distribution.

with P = 32 processors and up to D = 20 data items on
each of them. For these values, the arbitrary target distribution
Dcan requires in average 620 communications and involves 20
parallel steps with a probability larger than 1 − 3.3 × 10−11.
Each point in Figure 1 represents the average results and the
standard deviation on a set of 50 random initial distributions.
We can see that the best data distributions for the commu-
nication volume and for the communication step represents a
10% improvement compared to an arbitrary target distribution
when D ≥ 10, and a larger improvement for smaller values of
D. The results for these two data distributions are really close
and present a small standard deviation.

2) Skewed balanced initial data distribution: Real world
data distributions are usually not random. Some data are more
likely to be initially hosted by some particular processor. In this
section, we show the possible gain of using the proposed algo-
rithms for skewed initial distributions. We consider a balanced
target data partition Ptar where each of the P components
Ptar (j) includes D elements of data. For 0 ≤ α ≤ 1, we note
Dα

ini the initial data distribution which maps �αD	 data items
in Ptar (j) on processor (j+1) mod P , and which randomly
maps the other D − �αD	 data items to all P processors.
Note that D0

ini represents a random balanced data distribution
as studied in previous section.

We still use Dcan , the arbitrary target distribution which
maps component Ptar (j) onto processor j, as a comparison
basis. During the redistribution phase from Dα

ini to Dcan ,
each processor sends at least �αD	 of its elements. With
the skewed distribution, we can compute the average volume
of communication of Dcan : E(RedistVol(Dα

ini → Dcan)) =
D(P − 1) + �αD	. The number of steps required to schedule
the redistribution phase from Dα

ini to Dcan is equal to D with

probability 1−
(
1−

(
P−1
P

)D−�αD�)P
.

Figure 2 depicts the relative volume of communication
and the relative number of redistribution steps for the target
distributions Dvol (obtained with Algorithm 1) and Dsteps

(obtained with Algorithm 2), normalized with the performance
of the arbitrary target distribution Dcan . The simulations have
been conducted with P = 32 processors, D = 20 elements
of data on each of them and α varying from 0 to 1. When
α is close to 0, Dα

ini is close to a random balanced data
distribution and we retrieve the results of the previous section.
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Figure 2: Performance of Algorithm 1 and 2 compared to the
canonical distribution for a skewed initial distribution.

When α is larger than 0.2, for every component Ptar (j),
the proportion of data in Ptar (j) that are initially hosted
by processor (j + 1) mod P is significant. Thus, mapping
Ptar (j) onto processor (j + 1) mod P becomes the best
solution to reduce both the volume of communication and the
number of communication steps. We can see that, in this case,
Algorithm 1 and Algorithm 2 provide the same target data
distribution. Both objectives decrease linearly with α since the
proportion of data that are initially mapped onto the correct
processor increases linearly with α. Altogether, we observe
significant gains over standard redistribution for a wide range
of values of α.

V. COUPLING REDISTRIBUTION AND STENCIL

COMPUTATIONS

In this section, we focus on a simple, yet realistic, applica-
tion to assess the complexity of redistribution when coupled
to a computational kernel. We consider a 1D-stencil iterative
algorithm, which updates in parallel each element of an array,
according to the value of its direct neighbors. Stencil compu-
tations are widely used to numerically solve partial differential
equations [23].

A. Application model

We consider here a three-point stencil with circular arrange-
ment of the data. More precisely, to compute the value x(i, t)
of the data at position i at step t, we need its value and those
of its left and right neighbors at the previous step, namely
x(i, t−1), x(i−1 mod N, t−1), and x(i+1 mod N, t−1).
If the neighbors are not stored on the same processor, their
value has to be received from the processors hosting them.
Thus, each iteration of the stencil algorithm consists in two
phases, the communication phase when the value of each data
item is sent to the processors hosting its neighbors, and the
computation phase, when each data item is updated according
to a given kernel using these values. The update kernel depends
on the application.

Given a data partition Ptar , let Ni,j be the number of
data items sent by the processor hosting subset Ptar (i) to the
processor hosting subset Ptar (j) during one communication
phase of the stencil algorithm: Ni,j is the number of left or
right neighbors in Ptar (i) of data items in Ptar (j)), and Ni,j =
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|{0 ≤ d ≤ N − 1 s.t. Ptar (d − 1) = j or Ptar (d + 1) = j}|.
The workload �i of the processor hosting subset Ptar (i) is
�i = |{0 ≤ d ≤ N − 1 s.t. D(d) = i}|.

Given a data partition Ptar , the running time of the stencil
algorithm depends on the communication model, but not on
the actual data distribution, provided that it is compatible
with Ptar . Let τcomm be the time needed to perform one
communication (see Section III-C), and let τcalc be the time
needed to perform one data update for the considered stencil
application. The processing time for K iterations of the stencil
with the two communication models is the following (using the
notations of Section III-C):

• Total volume: For problem VOLPART&REDISTRIB,
Tcomp(Ptar ) = K × T iter

vol (Ptar ), where

T iter
vol (Ptar ) = τcomm ×

⎛
⎝ ∑

0≤i≤P−1

∑
j

Nij

⎞
⎠

+τcalc × max
0≤i≤P−1

�i

The first term corresponds to the serialization of all com-
munications, and the second one to the parallel processing
of the updates.
• Number of parallel steps: For problem STEP-

PART&REDISTRIB, Tcomp(Ptar ) = K × T iter
steps(Ptar ),

where

T iter
steps(Ptar ) = τcomm × max

0≤i≤P−1

⎛
⎝∑

j

Nij ,
∑
j

Nji

⎞
⎠

+τcalc × max
0≤i≤P−1

�i

B. Complexity

Assume without loss of generality that N is a multiple of P .
There is a well-known optimal data partition for the 1D-stencil
kernel, namely the full block partition (data item i is assigned
to subset �iP/N	). This partition minimizes the duration of
the communication phase (only two items are sent/received)
and the computation phase is perfectly balanced.

Starting from an initial data distribution Dini , we can use
either Algorithm 1 or 2 to find a target distribution Dtar

which is compatible with the full-block partition and whose
redistribution cost is minimal. However, redistributing from
Dini to Dtar may induce a large overhead on the total
execution time, and is fully justified only when the number
of iterations K is large enough. It may be useful to avoid
a costly redistribution for small values of K and to find a
target redistribution which is a trade-off between minimizing
redistribution time and processing time. Actually, finding such
a trade-off distribution is an NP-complete problem for both
communication models:

Theorem 3. Both the VOLPART&REDISTRIB and STEP-
PART&REDISTRIB problems with the 1D-stencil kernel are
strongly NP-complete.

We only provide a sketch of proof for VOL-
PART&REDISTRIB (the proof for STEPPART&REDISTRIB is
similar), as the complete proof is long, involved and technical.

We refer the interested reader to the companion research
report [24] for full details.

Proof sketch: VOLPART&REDISTRIB clearly belongs to
NP, and the certificate is the new distribution Dtar of data.
To establish the completeness, we use a reduction from the
3-Partition problem [25], which is known to be strongly NP-
complete. We consider the following instance Inst1 of the 3-
Partition problem: let ai be 3m integers and B an integer
such that

∑
ai = mB. To solve Inst1, we need to solve

the following question: is there a partition of the ai’s in m
subsets S1, ..., Sm, each containing exactly 3 elements, such
that, ∀Sk,

∑
i∈Sk

ai = B.

We build the following instance Inst2 of the VOL-
PART&REDISTRIB problem, illustrated on Figure 3. Figure 3
represents the initial data distribution Dini of 96mB data items
on 12m different processors. We set K = 1, τcomm = 1,
τcalc = B2, and Ttotal = 8 + 5mB + 8B3 for the total
cost of the 1D-stencil algorithm. The construction of Inst2
is polynomial in the size of Inst1. We show that Inst2 has a
solution if and only if Inst1 has a solution.

Assume first that Inst2 has a solution and let Dtar be the
final distribution of data. We prove that Dtar is similar to
data distribution Dsol illustrated on Figure 3. A first step is
to prove that all the processors host 8B data items in Dtar .
In a second step, we prove that the volume of communication
involved in the redistribution from Dini to Dtar is not larger
than 5mB. Finally, we prove that each processor cannot host
more that 4 maximal connected components in Dtar . Gathering

all these results, we know that each processor P
(2)
k hosts a set

Ak of the ai’s consecutive elements such that |Ak| = 3 and∑
ai∈Ak

ai = B, which means that the Aks are a solution of
Inst1. Conversely, if we suppose that Inst1 has a solution, the
data distribution Dsol illustrated on Figure 3 is a solution to
Inst2.

VI. CONCLUSION

In this paper, we have studied the problem of finding the
best data redistribution, given a target data partition. We have
used two cost metrics, the total volume of communication
and the number of parallel redistribution steps. We have
provided optimal algorithms for both metrics, and shown
through simulations that they achieve significant gain over
redistributing to an arbitrary fixed distribution. We have also
proved that finding the optimal data partition that minimizes
the completion time of the redistribution followed by a 1D-
stencil kernel is NP-complete. Altogether, these results lay the
theoretical foundations of the data partition problem on modern
computers.

Future work will be devoted to an experimental validation of
the approach on a multicore cluster. Admittedly, the platform
model used in this paper will only be a coarse approximation of
actual parallel performance, because state-of-the-art runtimes
use intensive prefetching and overlap communications and
computations. Still, we expect that the optimal algorithms
presented in this paper will lead to better performance, even
for compute-intensive kernels such as dense linear algebra
routines.
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Figure 3: Dini and Dsol in the proof of Theorem 3
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